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Abstract

Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-
of-sample predictive accuracy. However, computing LOO-CV criteria can be compu-
tationally expensive due to the need to fit the model multiple times. In the Bayesian
context, importance sampling provides a possible solution but classical approaches can
easily produce estimators whose variance is infinite, making them potentially unreli-
able. Here we propose and analyze a novel mixture estimator to compute Bayesian
LOO-CV criteria. Our method retains the simplicity and computational convenience
of classical approaches, while guaranteeing finite variance of the resulting estimators.
Both theoretical and numerical results are provided to illustrate the improved robust-
ness and efficiency. The computational benefits are particularly significant in high-
dimensional problems, allowing to perform Bayesian LOO-CV for a broader range of
models. The proposed methodology is easily implementable in standard probabilistic
programming software and has a computational cost roughly equivalent to fitting the
original model once.

Keywords: Leave-One-Out Cross-Validation, Importance Sampling, Model Evalu-
ation, Bayesian Analysis, Markov Chain Monte Carlo.

1 Introduction

Consider a Bayesian model with conditionally independent observations y = (y1, . . . , yn)
given a set of parameters θ, and denote the resulting joint distribution of θ and y as

p(θ, y) = p(θ)

n∏
i=1

p(yi|θ) . (1)

Given some observed data y, the model yields a posterior distribution over the unknown
parameters, p(θ|y), and a posterior predictive distribution at a new point ynew given by

p(ynew|y) =

∫
p(ynew|θ)p(θ|y)dθ .

In many contexts, one is interested in quantifying the out-of-sample performances of such
predictive distribution, for example to optimize some tuning hyper-parameter or to com-
pare different models. Assuming the existence of a true data-generating process p∗, a
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gold-standard measure of predictive performances is the expected log predictive density
(ELPD) defined as

ELPD =

∫
log p(ynew|y)p∗(ynew)dynew. (2)

While alternative scoring rules for predictive distributions could be used, here we focus on
the logarithmic one since it has both strong decision theoretic justification and is the one
most commonly used in practice, see Section 1.1 for more details.

The true data generating distribution p∗ is unknown in practice, and the ELPD is typ-
ically approximated through cross-validation. In particular, leave-one-out cross-validation
(LOO-CV) leads to an estimator of (n times) the ELDP defined as

ψ :=
n∑
i=1

log p(yi|y−i) =
n∑
i=1

log

(∫
p(yi|θ)p(θ|y−i)dθ

)
, (3)

where y−i = (yj)j 6=i. The LOO-CV estimator ψ has appealing statistical properties [Vehtari
and Ojanen, 2012], such as smaller bias compared to k-fold CV with small k, especially
in high-dimensional contexts [Rad et al., 2020]. However, naive approaches to compute
ψ require to fit the original model n times, one for each LOO dataset y−i, thus being
computationally infeasible. When using Monte Carlo methods to perform computations, a
classical solution is to draw samples from p(θ|y) only once and then resort to importance
sampling to approximate each LOO posterior p(θ|y−i) [Gelfand et al., 1992]. However,
as previously noted in the literature, the resulting estimators of {p(yi|y−i)}ni=1 are often
unreliable and can easily have infinite variance [Peruggia, 1997, Epifani et al., 2008]. Here
we propose novel estimators of {p(yi|y−i)}ni=1, based on a mixture representation of leave-
one-out posteriors. Unlike standard estimators in the literature, our method provides
guarantees on the finiteness of the estimator’s variance and performs dramatically bet-
ter in high-dimensional problems, where LOO-CV is particularly appealing and standard
competitors break down (see e.g. results in Sections 3 and 4). Crucially, our methodology
requires only a single sampling procedure and it can be trivially implemented in proba-
bilistic programming languages, thus preserving the practicality and limited computational
cost of previously proposed and widely used solutions [Gelfand et al., 1992, Vehtari et al.,
2017], while offering drastically improved robustness to high-dimensional scenarios.

More generally, our work support recent evidence, both in the Bayesian and frequentist
literature [Beirami et al., 2017, Rad et al., 2020, Giordano et al., 2019, Paananen et al.,
2021], that LOO-CV criteria can be reliably approximated with a computational cost
comparable to the one of a single model fit, thus being not only statistically appealing but
also computationally practical. In this sense LOO-CV can be computationally cheaper
than k-fold CV by a factor of k, since the latter requires fitting k separate models and
is not easily amenable to the same importance sampling tricks as LOO-CV. Such k-times
speed-up can be crucial in the context of Bayesian computation with Monte Carlo methods
where each model fitting can be expensive. In this context, our work contributes to prevent
one of the main factor limiting the applicability of Bayesian LOO-CV, i.e. the potential
instability of classical estimators of {p(yi|y−i)}ni=1.
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The article is organized as follows: after briefly reviewing relevant literature in Section
1.1, we describe our proposed methodology and compare to the classical one in Section 2.
Section 3 provides some theoretical analysis of the resulting estimators, including a proof
of finite variance and a comparison to standard methods in high-dimensional regression
contexts. Section 4 provides numerical results that support the theoretical findings and
illustrate the improved robustness both to the presence of model misspecification and to
high-dimensionality of the parameter space. Finally, Section 5 discusses simple extensions
of our methodology (e.g. different scoring rules or non conditionally-independent models).
For notational brevity, throughout the paper we use the same letter p to denote appropriate
joint, marginal and conditional distributions of the model for θ, y and ynew, as done in (1)-
(3). Similarly, we leave the dependence of p(yi|θ) and p(ynew|θ) on additional covariates
or other variables implicit in the notation.

1.1 Predictive criteria for Bayesian model validation and selection

Motivations to estimate out-of-sample predictive measures such as ELPD in (2) include
hyper-parameters tuning and model validation, selection and averaging. In such contexts,
criteria based on predictive distributions have complementary roles compared to ones based
directly on posterior distributions, such as Bayes factors and classical Bayesian model
averaging [Hoeting et al., 1999]. Using Box [1980] words, posterior distributions provide a
basis for “estimation of parameters conditional on the adequacy of the entertained model”
while predictive distributions enable “criticism of the entertained model in the light of
current data”. Practical advantages of predictive-based criteria include being more directly
comparable across different models (including non-nested ones), and being typically less
sensitive to prior specifications compared to Bayes factors, including vague priors as in
e.g. Bartlett’s paradox in Bayesian model selection Bartlett, 1957, Lindley, 1957, Liang
et al., 2008. The literature on the topic is vast: see for example Gelfand and Dey [1994],
Vehtari and Ojanen [2012] and reference therein for an overview and some arguments in
favour of Bayesian predictive measures and cross-validation criteria, and Fong and Holmes
[2020] for a recent theoretical comparison between cross-validation and marginal likelihood
techniques. While there are various scoring functions to evaluate predictive distributions
[Gneiting, 2011], here we focus on the logarithmic one, which is the unique local and
proper scoring rule [Bernardo, 1979] and the most widely used in practice. See for example
Gelman et al. [2014] for arguments in favour of using the ELPD metric in (2) and its LOO-
CV estimator in (3). Beyond computing ELPD estimates as in (3), the LOO predictive
probabilities {p(yi|y−i)}ni=1 are also of interest in themselves, as they allow to implement
methodologies aiming at optimizing predictive performances such as Bayesian stacking
(see e.g. Yao et al. [2018] and references therein) or at identify discording observations (see
e.g. the notion of conditional predictive ordinate Pettit, 1990) which then leads to model
improvements and refinements. See also Weiss and Cho [1998], Epifani et al. [2008] and
references therein for related discussion.
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2 Computing Bayesian leave-one-out cross validation

In this paper we focus on Monte Carlo methodologies to compute the LOO predictive prob-
abilities {p(yi|y−i)}ni=1. Depending on the context, these may be themselves the quantities
of interest, or an intermediate step to compute LOO-CV criteria such as ψ defined in
(3). In the latter case an estimate of ψ is simply obtained by plugging-in the estimates of
p(yi|y−i) in (3).

The first, somehow brute-force, approach to this computation would be to fit n times
the model separately. Recalling that p(yi|y−i) =

∫
p(yi|θ)p(θ|y−i)dθ, one could draw S

Monte Carlo samples from each LOO posterior p(θ|y−i), using e.g. n separate MCMC
runs, and then estimate p(yi|y−i) with the resulting sample average of p(yi|θ). We denote
the resulting estimators of µi := p(yi|y−i) as

µ̂
(loo)
i = S−1

S∑
s=1

p(yi|θs) (4)

where θ1, θ2, ..., θS ∼ p(θ|y−i). Assuming the computational cost of each Monte Carlo sam-
ple to grow linearly with n, this would require Θ(Sn) samples and Θ(Sn2) computational
cost in total, which is typically unfeasible.

A potential solution proposed in [Gelfand et al., 1992] is to instead draw only one set
of samples from the full-data posterior, and then use importance sampling to approximate
expectations with respect to the n different LOO posteriors. This leads to unnormalized
importance weights between the i-th LOO posterior and the full posterior equal to

w
(post)
i (θ) = p(yi|θ)−1 ∝ p(θ|y−i)

p(θ|y)
.

The corresponding self-normalized importance sampling estimator of p(yi|y−i) is

µ̂
(post)
i =

∑S
s=1 p(yi|θs)w

(post)
i (θs)∑S

s=1w
(post)
i (θs)

=

(
S−1

S∑
s=1

p(yi|θs)−1

)−1

(5)

where θ1, θ2, ..., θS ∼ p(θ|y). This procedure is practically appealing because it only re-
quires one sampling routine and has Θ(Sn) total cost, including the computation of the
n estimators {µ̂(post)

i }ni=1, each of which can be obtained at Θ(S) cost given the samples
{θs}Ss=1 using definition (5). The drawback is that the resulting importance sampling es-
timators can be unstable and even have infinite variance. In such cases the estimators are
still consistent, i.e. limS→∞ µ̂

(post)
i = p(yi|y−i) almost surely, but the central limit theorem

and the S−1/2 rate of convergence may not hold [Epifani et al., 2008]. These issues are not
surprising if one realizes that (5) is a variation of the classical harmonic-mean estimator
[Newton and Raftery, 1994], which has well-known stability issues. This has motivated
proposals in the literature to improve the stability of LOO-CV estimators as well as to
diagnose their potential failure. A notable example that we compare with in simulations
later on is the Pareto-smoothed importance sampling methodology of [Vehtari et al., 2017]
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implemented in the popular loo R package [Vehtari et al., 2020]. See also Alqallaf and
Gustafson [2001], Bornn et al. [2010], Rischard et al. [2018], Paananen et al. [2021] for
other work in the area, and Section 4.3.1 for comparison with some of those.

2.1 Mixture estimators

Here we propose a different set of estimators for {p(yi|y−i)}ni=1 with drastically improved
robustness to high-dimensionality, which we achieve expressing the problem in terms of
mixtures rather than harmonic mean identities. We introduce a component indicator I,
formally a random variable on {1, . . . , n}, and define a joint distribution for θ and I as

qmix(θ, I) =
p(θ)p(y−I |θ)∑n

j=1 p(y−j)
(θ, I) ∈ Θ× {1, . . . , n} . (6)

Here qmix is defined so that qmix(θ|I = i) = p(θ|y−i) and thus p(yi|y−i) can be written as
the following conditional expectation

p(yi|y−i) = E(θ,I)∼qmix
[p(yi|θ)|I = i] . (7)

This representation leads to our proposed set of estimators, which are obtained through
the following steps:

(i) draw S samples θ1, θ2, ..., θS from qmix(θ), where

qmix(θ) = Z−1
n∑
j=1

p(θ)p(y−j |θ) ∝ p(θ|y)

 n∑
j=1

p(yj |θ)−1

 , (8)

is the marginal distribution of θ under the joint qmix(θ, I) and Z =
∑n

j=1 p(y−j). Sam-
pling from (8) can be done using standard MCMC algorithms, as discussed below and in
Appendix A;

(ii) for each i ∈ {1, . . . , n}, obtain weighted samples from p(θ|y−i) assigning to each
sample in {θs}s=1,...,S the weight

w
(mix)
i (θ) = qmix(I = i|θ) =

p(yi|θ)−1∑n
j=1 p(yj |θ)−1

,

which is the conditional probability of I = i given θ under the joint distribution qmix(θ, I);
(iii) for each i ∈ {1, . . . , n}, estimate p(yi|y−i) with

µ̂
(mix)
i =

∑S
s=1 p(yi|θs)w

(mix)
i (θs)∑S

s=1w
(mix)
i (θs)

. (9)

The estimator in (9) can also be interpreted as a self-normalized importance sampling
estimator with importance distribution qmix(θ) and target distribution p(θ|y−i), so that
w

(mix)
i (θ) are unnormalized importance weights between target and importance distribu-

tion. We often use this formulation when proving theoretical results in Section 3.
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The proposed estimators {µ̂(mix)
i }pi=1 retain the simplicity and computational practi-

cality of the classical ones in (5). In fact a single sampling routine is required, this time
from qmix(θ), and the total computational cost to obtain the n estimators {µ̂(mix)

i }ni=1 is
still Θ(Sn). The latter follows from two crucial remarks. First, evaluating qmix(θ) up to
normalizing constant requires Θ(n) cost using the last expression in (8), see also (21) in
Appendix A.1. Note that a naive use of the first expression in (8) would instead incur in
a Θ(n2) cost. Second, computing {µ̂(mix)

i }ni=1 in (9) requires first an Θ(Sn) computation
common to all i’s, namely the computation of {

∑n
j=1 p(yj |θs)−1}Ss=1 and, given the latter,

each µ̂(mix)
i can be computed at Θ(S) cost. See Appendix A.2 for more details.

Also, evaluating gradients of the log of the mixture distribution, ∇ log qmix(θ), involves
an Θ(n) cost, analogously to gradients of the standard log-posterior ∇ log p(θ|y), and the
whole routine is trivial to implement in probabilistic programming languages that rely on
gradient-based MCMC, such as stan [Stan Development Team, 2020]. In our numerical
experiments, sampling from p(θ|y) and qmix(θ) with stan required a comparable amount
of time, with only a slight overhead for qmix. See Appendix A for more details on efficient
and numerically stable implementation of the sampling procedure.

Remark 1 (Mixture interpretation). The distribution qmix can be interpreted as a mix-
ture of LOO posteriors writing qmix(θ) =

∑n
i=1 πip(θ|y−i) with mixture probabilities πi =

Z−1p(y−i) satisfying
∑

i πi = 1 and πi ≥ 0. Rewriting πi = Z̃−1p(yi|y−i)−1, with Z̃ =∑
j p(yj |y−j)−1, we can express the quantity of interest as p(yi|y−i) = Z̃−1/πi. Indeed, the

denominator in (9) times S−1 is a consistent estimator of πi while the numerator times
S−1 is a consistent estimator of Z̃−1. Thus, the algorithm is effectively estimating the
probability πi of each component in the mixture representation and using that to estimate
p(yi|y−i). This is arguably where the improvement in performances of µ̂(mix)

i compared to
µ̂

(post)
i comes from, since mixture probabilities are typically easier to estimate than harmonic

means. For example the weights w(mix)
i (θ) are by construction upper bounded by 1, being

conditional probabilities, which is a desirable feature to improve robustness of importance
sampling estimators.

The idea of using mixtures to derive estimators with improved stability underlies vari-
ous methodologies in the Monte Carlo literature, such as Bridge Sampling and variations
[Bennett, 1976, Geyer, 1991, Meng and Wong, 1996, Shirts and Chodera, 2008]. In this
sense, one can think at our proposed methodology as an effective and practical way to
extend these techniques to LOO-CV computation contexts while preserving a Θ(Sn) total
computational cost.

Remark 2 (Choice of mixture probabilities). Note that the mixture probabilities πi in-
volve the intractable terms p(y−i) that are typically not available in closed form. However,
these terms cancel with the denominator of p(θ|y−i) = p(θ)p(y−i|θ)/p(y−i), making qmix(θ)
computable up to a single intractable normalizing constant Z as in (8) and thus amenable
to standard sampling algorithms. Also, since πi ∝ p(yi|y−i)−1, qmix naturally puts more
weight on mixture components with smaller p(yi|y−i). This is desirable since small values
of p(yi|y−i) are typically harder to estimate and contribute more to ψ =

∑n
i=1 log p(yi|y−i).
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In Sections 3.1 and 5 we discuss extensions to mixture constructions with general choices
of mixture probabilities.

3 Analysis of the proposed estimator

In this section we provide a theoretical analysis of the proposed estimators {µ̂(mix)
i }ni=1 with

particular focus on comparing them with the classical ones {µ̂(post)
i }ni=1. The efficiency of

the different estimators, both classical and novel ones, is measured in terms of their relative
asymptotic variances, defined as

AV
(post)
i = lim

S→∞
S var(µ̂(post)

i /µi) and AV
(mix)
i = lim

S→∞
S var(µ̂(mix)

i /µi) , (10)

where µi = p(yi|y−i) as before. By the delta method we also have

AV
(post)
i = lim

S→∞
S var( log(µ̂

(post)
i )) and AV

(mix)
i = lim

S→∞
S var( log(µ̂

(mix)
i )),

meaning that the above terms can also be interpreted as the asymptotic variances of the
plug-in estimators on the log-scale, log(µ̂

(post)
i ) and log(µ̂

(mix)
i ). Thus {AV (post)

i }ni=1 and
{AV (mix)

i }ni=1 are a natural measure of performance when the quantities of interest are
{log(p(yi|y−i))}ni=1 or ψ in (3).

Note that the asymptotic variances in (10) refer to the case when (θs)
S
s=1 in (5) and (9)

are i.i.d. samples from, respectively, p(θ|y) and qmix(θ). In practice, one is rarely able to
draw i.i.d. samples from such distributions and instead typically relies on MCMC schemes,
leading to correlated samples. In such cases the asymptotic variances of the actual es-
timators used in practice can be decomposed as the product of an importance sampling
contribution times an MCMC contribution, namely as the product of the asymptotic vari-
ances in (10) times an MCMC integrated autocorrelation time, see e.g. Lemma 1 of Zanella
and Roberts [2019]. Thus, while formally referring to the i.i.d. case, the asymptotic vari-
ances in (10) are directly relevant also to the case of MCMC sampling.

3.1 Finiteness of asymptotic variances

As mentioned above, a serious drawback of the classical estimator is that its variance
AV

(post)
i can be very large, even infinite. Indeed Peruggia [1997], Epifani et al. [2008] pro-

vide various examples, even simple ones, where AV (post)
i is infinite. Our first key theoretical

result states that, on the contrary, the proposed mixture estimators lead finite asymptotic
variances under minimal technical assumptions. In particular, we will only require that

p(yi|y−i) > 0 and
∫

Θ
p(yi|θ)p(θ|y)dθ <∞ for all i = 1, . . . , n . (A1)

The above assumptions require the quantity of interest p(yi|y−i) to be non-zero, otherwise
log p(yi|y−i) would not be well defined, and the predictive distribution p(ynew|y) based on
the full data to be finite at ynew = yi for each i. These are minimal assumptions that are
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typically satisfied for any model where LOO-CV quantities are of interest. Given these,
we can state the following result.

Theorem 3.1.1. Under (A1) we have that AV (mix)
i <∞ for all i = 1, . . . , n.

Theorem 3.1.1 holds also in the more general case where qmix in (8) is replaced by
a weighted version q

(α)
mix(θ) = Z−1

α

∑n
i=1 αip(y−i|θ)p(θ) where Zα =

∑n
i=1 αip(y−i) and

α = (αi)
n
i=1 are arbitrary weights satisfying αi ∈ (0,∞) for all i. In the supplement we

prove the result in such more general version. See also Remark 2 and Section 5 for more
details on the practical relevance of the more general weighted mixture q(α)

mix.
Theorem 3.1.1 highlights a first sharp distinction between the classical and mixture

estimators. In fact, the difference between having finite or infinite asymptotic variance has
major practical consequences, such as guaranteeing that mixture estimators will converge
at the usual S−1/2 rate, while classical estimators µ̂(post)

i may not. This is indeed observed
in practice even for simple models, see e.g. Figure 3 in Section 4 below, and implies that
in those situations the improvement in efficiency between µ̂

(mix)
i and µ̂

(post)
i increases to

infinity as S →∞.

3.2 High-dimensional regression models

In this section we provide a more refined analysis of the behavior of AV (post)
i and AV (mix)

i ,
focusing on high-dimensional regression models, first considering the linear case and then a
more general regression context. Our results suggest that the classical estimator is highly
sensitive to high-dimensionality and in particular it deteriorates as the ratio p/n increases,
while the mixture estimator exhibits drastically improved robustness.

3.2.1 Connection to Bayesian leverage and the impact of high-dimensionality

Consider the regression model

yi|θ ∼ N(xTi θ, σ
2) i = 1, . . . , n

θ ∼ N(θ0,Σ) ,
(11)

where xi and θ indicate p × 1 matrices of, respectively, covariates and parameters. We
assume the noise level σ2 and the prior mean and covariance, θ0 and Σ, to be fixed and
known. For the linear model in (11), the finiteness of AV (post)

i is elegantly related to the
notion of Bayesian leverage. Denoting by X the n × p matrix of covariates, define the
Bayesian hat matrix, or Ridge hat matrix, as

H = X(XTX + σ2Σ−1)−1XT , (12)

which collapses to the standard (frequentist) hat matrix in the flat prior case, i.e. when
Σ−1 = 0. The diagonal element Hii represent the Bayesian leverage of the i-th observation.
Thus, a higher value of Hii indicates a higher discrepancy between the full posterior p(θ|y)
and the LOO posterior p(θ|y−i), which in turn implies that the importance sampling es-
timator in (5) can have poor behavior. The theorem below makes the connection precise.
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The connection between leverages and the finiteness of AV (post)
i was previously studied

in Peruggia [1997]. The following result extends results therein, allowing for p > n and
using the notion of Bayesian leverage, rather than the frequentist one (which corresponds
to Σ−1 = 0).

Theorem 3.2.1. Under (11), for each i ∈ {1, . . . , n}, we have AV (post)
i < ∞ if and only

if Hii < 0.5.

The connection to Bayesian leverages provides useful insight in the behavior of the clas-
sical estimator in (5) and in particular on its dependence with respect to the dimensionality
of θ and the amount of prior shrinkage.

Consider first the case of flat improper prior for θ, corresponding to p < n and Σ−1 = 0.
In such case H is the standard (frequentist) hat matrix and its trace satisfies

∑n
i=1Hii =

rk(X), where rk(X) denotes the rank of X. For linearly independent predictors we have
rk(X) = p, which implies that Hii ≥ p/n for at least one i. Thus, by Theorem 3.2.1,
as soon as p ≥ n/2 some AV (post)

i must be infinite. When the entries of X are random
variables (r.v.s) with complex Gaussian distributions, it holds Hii ∼ Beta(p, n − p), see
Appendix A of Chave and Thomson [2003]. This provides a more refined description of
the distribution of leverages under a random design assumption and further highlights the
key role of the ratio p/n, since in that case E[Hii] = p/n. The same will hold by symmetry
for any random designs with rk(X) = p almost surely and distribution of X exchangeable
over rows. This is consistent with our numerical experiments, where the performance of
the classical estimators quickly degrade as p increases and degenerate when p is of the
same order as n.

More generally, when Σ = ν2Ip, with Ip being the p × p identity matrix, each Hii is a
strictly decreasing function of the so-called ridge regularization parameter λ = σ2ν−2 and
the trace of H satisfies

∑n
i=1Hii =

∑rk(X)
j=1

d2j
d2j+λ

, where (dj)
rk(X)
j=1 are the singular values

of X [Walker and Birch, 1988]. Thus, increasing the amount of prior regularization lowers
the values of the Bayesian leverages, increasing the chances of having AV (post)

i <∞ for all
i. This is consistent with the intuition that stronger shrinkage and regularization decreases
the sensitivity of the posterior to each single observation, making LOO-CV calculations
potentially easier. Nonetheless, as illustrated in Figure 1 we see below, even under strong
prior shrinkage the leverages Hii can be large when p/n is large, leading to instability of
the classical estimator.

3.2.2 Behavior of the classical and mixture estimators in large p regimes

We now provide a high-dimensional asymptotic analysis of AV (post)
i and AV

(mix)
i under

random design assumptions. Specifically, we assume that

(Xij)i,j≥1 are independent r.v.s with E[Xij ] = 0, V ar(Xij) = τ2 <∞ and E[X4
ij ] ≤ cx

(A2)
for some cx < ∞. The assumption of zero mean and constant variance is realistic in
settings where the regressors are standardized. While the assumption of independence is
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Figure 1: Distribution of the leveragesHii as a function of p for n = 100 andXij
iid∼ N(0, 1).

Left: Σ−1 = 0, center: Σ = 10Ip, right: Σ = p−110Ip.

potentially restrictive, it allows to derive more intuitive and explicit results. We expect our
conclusions to hold well beyond such assumption but we leave such extensions to future
work. For example, a direct and relatively immediate extension would be to consider cases
of weak dependence among predictors, such as Assumption 3 in Fasano et al. [2022].

We consider settings where p can be large. In such cases, it may be appropriate to
assume the prior covariance of θ to vary with p. An interesting and natural setting is to
take Σ = ν2

pIp with ν2
p = c/p for some fixed c > 0, which induces a prior variance of the

linear predictors var(xTi θ) = c(p−1
∑p

j=1X
2
ij) that is approximately constant w.r.t. p and

converges to the non-degenerate value cτ2 ∈ (0,∞) as p→∞ under (A2). Other regimes
considered in the literature are ones where ν2

p is constant or where it scales as Θ(n/p). The
following proposition characterizes the behaviour of Hii when p → ∞ for all such cases,
which can be obtained with different choices of c.

Proposition 3.2.2. Assume (11) and (A2), with Σ = ν2
pIp and limp→∞ pν

2
p = c ∈ [0,∞].

For each i ∈ {1, . . . , n}, we have

Hii →
cτ2

σ2 + cτ2
almost surely as p→∞. (13)

In the above convergence n is fixed while p → ∞, and cτ2

σ2+cτ2
= 1 when c = ∞. It follows

that AV (post)
i =∞ almost surely for large enough p if cτ2 > σ2, while lim supp→∞AV

(post)
i <

∞ almost surely if cτ2 < σ2.

The statement about AV (post)
i being eventually infinite for a large enough p when

cτ2 > σ2 is a direct consequence of (13) and Theorem 3.2.1. This is coherent with the
numerical simulations of Section 4, where the classical estimator eventually breaks down as
p/n increases. The condition cτ2 > σ2 is satisfied for most common prior specifications. It
is obviously satisfied when ν is constant since c =∞ there. Under stronger prior shrinkage
where ν2

p = c/p with c < ∞, one typically sets c to some value that is significantly larger
that the noise variance σ2, to avoid overly informative priors for the linear predictors xTi θ,
and thus cτ2 > σ2 will typically hold also there. Finally, the condition cτ2 > σ2 can be
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directly interpreted as a comparison between prior and likelihood information, in particular
as requiring the latter to be stronger than the former.

Taking the limit for p→∞ when n is fixed mimics a regime where p is large compared
to n. As shown in the simulations of Section 4, such regime is highly challenging for
Monte Carlo methods performing LOO-CV computations, the intuition being that the
discrepancy among LOO posteriors is maximal in such regime. Large-p-small-n regimes
are also interesting to consider since LOO-CV methods are particularly appealing there,
due to the potentially large bias that k-fold CV methods incur in estimating ELPD in such
contexts (see e.g. Rad et al. [2020] and references therein).

We now study the behaviour of AV (mix)
i in settings similar to Proposition 3.2.2. We

first consider the case where c <∞.

Theorem 3.2.3. Assume (11) and (A2), with Σ = ν2
pIp and limp→∞ pν

2
p = c ∈ [0,∞).

Then we have lim supp→∞AV
(mix)
i <∞ almost surely for every i ∈ {1, . . . , n}.

Compared to Theorem 3.1.1, which guarantees that AV (mix)
i < ∞ for every fixed

dataset and thus for every p, Theorem 3.2.3 proves the stronger statement that each
AV

(mix)
i is also uniformly bounded with respect to p, suggesting that mixture estimators

are remarkably robust to high-dimensionality of the parameter space.

3.2.3 More general regression models

We now extend some of the results derived above for the Gaussian model (11) to more
general regression contexts. The results suggest that the improved robustness of µ̂(mix)

i

compared to µ̂(post)
i , especially in high-dimensions, is not specific to Gaussian likelihoods

but rather it holds more generally. We consider regression models with general likelihood
and Gaussian prior, where

θ ∼ N(θ0,Σ) ,

p(y|θ) =
n∏
i=1

g(yi|ηi) , where ηi = xTi θ for i = 1, . . . , n ,
(14)

and g(·|·) : R × R → [0,∞) is a generic likelihood function. The above formulation
includes generalized linear models (GLM’s) with Gaussian prior. Throughout, we assume
the likelihood to be upper bounded, i.e. supηi g(yi|ηi) <∞ for any fixed yi ∈ R. The latter
is arguably a mild assumption that is typically satisfied in practice.

Theorem 3.2.4. Assume (14) and (A2), with Σ = ν2
pIp and limp→∞ pν

2
p = c ∈ [0,∞).

Then we have that almost surely, for each i ∈ {1, . . . , n}:
(a) lim supp→∞AV

(mix)
i <∞

(b) lim supp→∞AV
(post)
i <∞ if∫

exp
(
−δη2

i

)
g(yi|ηi)−1dηi <∞ , (15)
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for some δ < (2cτ2)−1, while AV (post)
i = ∞ for large enough p if the integral in (15) is

equal to infinity for some δ > (2cτ2)−1.

Theorem 3.2.4 extends the results of Section 3.2.2 to generic likelihoods. Namely
AV

(mix)
i is shown to remain bounded away from infinity as p grows, while AV (post)

i is
shown to become eventually equal to ∞ when (15) does not hold, i.e. provided the likeli-
hood function has light enough tails. In the Gaussian likelihood case, (15) coincides with
requiring σ2 > cτ2, which directly relates to Proposition 3.2.2 and the discussion there-
after. Condition (15) also relates to the study of AV (post)

i under thick-tail or light-tail
priors in Epifani et al. [2008], although there the opposite scenario is considered where the
likelihood is Gaussian and the prior is general and no asymptotic regime is considered.

Finally, we consider the case where the prior variance of the linear predictors diverges
with p, i.e. limp→∞ pν

2
p = ∞. This happens for example when ν2

p remains constant as
p → ∞. In this case AV (mix)

i can also diverge as p → ∞, depending on the tail behavior
of the likelihood function. The underlying reason is that in such cases the LOO predictive
probabilities p(yi|y−i) go to 0 as p → ∞ and even the asymptotic variance of the LOO
estimators µ̂(loo)

i , which we regard as the gold-standard but computationally expensive
approach, diverge. We denote AV (loo)

i = limS→∞ S var(µ̂(loo)
i /µi) in the next theorem.

Theorem 3.2.5. Assume (14) and (A2), with Σ = ν2
pIp and limp→∞ pν

2
p = ∞. Then we

have:
(a) if

∫
g(yi|ηi)dηi < ∞ for i = 1, . . . , n then limp→∞AV

(loo)
i = limp→∞AV

(mix)
i = ∞

almost surely for i = 1, . . . , n;
(b) if

lim
ηi→∞

g(yi|ηi) + lim
ηi→−∞

g(yi|ηi) ∈ (0,∞) for i = 1, . . . , n (16)

then lim supp→∞AV
(mix)
i < ∞ and lim supp→∞AV

(loo)
i < ∞ almost surely as p → ∞

for i = 1, . . . , n. If (16) holds and limηi→∞ g(yi|ηi) = 0 or limηi→−∞ g(yi|ηi) = 0 for
i = 1, . . . , n, then limp→∞AV

(post)
i =∞.

Theorem 3.2.5 shows that, when limp→∞ pν
2
p =∞, the asymptotic behaviour ofAV (mix)

i ,
as well as AV (loo)

i , depends on the type of likelihood in the model. For integrable likeli-
hoods, i.e. ones satisfying

∫
g(yi|ηi)dηi <∞ such as for Gaussian, Poisson, etc., the perfor-

mances of all estimators under consideration (including the mixture and the gold-standard
but expensive LOO ones) deteriorate as p → ∞, see case (a) of Theorem 3.2.5. As men-
tioned above, the deterioration of performances of the mixture and LOO estimators in
this case is related to the target probabilities p(yi|y−i) going to 0 as p → ∞. Instead, for
non-integrable likelihoods such as the logistic one, which falls into case (b) of Theorem
3.2.5, we have that limp→∞AV

(post)
i =∞ while lim supp→∞AV

(mix)
i <∞.

4 Numerical simulations and real data examples

In this section we provide extensive numerical simulations, both on synthetic and real
data, to compare the efficiency of the classical and mixture estimators. We also include
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the Pareto-smoothed importance sampling (PSIS) estimator of Vehtari et al. [2017] in the
comparison, which is the default methodology implemented in the popular loo R package
[Vehtari et al., 2020] for Bayesian LOO-CV calculations. PSIS estimators are a modification
of classical posterior estimators µ̂(post)

i , where the importance weights are regularised to
alleviate potential instability due to heavy-tail weight distributions.

We test the above estimators in challenging cases where the difficulty in computing
the LOO predictive probabilities {p(yi|y−i)}ni=1 arises mostly from two sources: (a) high-
dimensionality of the parameter space and (b) presence of observations that are not well
fit by the model or more generally presence of model misspecification. We test (a) mainly
by considering large p scenarios and (b) by considering real datasets with (either known
or potential) observations not well fit by the model. The results suggest that the mixture
estimator dominates the classical and PSIS ones and, in line with the theoretical results
of Section 3, that the magnitude of the improvement increases with the dimensionality
of problem, while also being potentially large for low dimensional problems with highly
influential observations. In Section 4.3.1 we consider also comparisons to the methodologies
in Alqallaf and Gustafson [2001] and Bornn et al. [2010].

4.1 High-dimensional linear regression

We start by considering high-dimensional linear regression models where the quantities of
interest {p(yi|y−i)}ni=1 can be computed in closed form and the different estimators can be
compared in terms of the induced mean squared errors (MSE) for a variety of setting.

4.1.1 Dependence of the estimators efficiency on n and p

First we explore how the performances of the different estimators depend on the number
of data points n and parameters p. We consider the model in (11), with σ2 = 1 and
two prior specifications, one where Σ = 10Ip and one where Σ = 100/pIp. We take
n ∈ {50, 100, 150} and for every such value we vary p/n ranging from 0.1 to 3. For every
resulting (n, p) pair we generate 1000 synthetic datasets, simulating the design matrix X
with i.i.d. standard normal entries and the data y from the corresponding model likelihood
in (11). For each generated dataset, we compute the exact values of {p(yi|y−i)}ni=1, as well
as the corresponding classical, mixture and PSIS estimators based on S = 2 × 103 i.i.d.
samples from either p(θ|y) or qmix(θ). We compute the PSIS estimator using the python
code available at https://github.com/avehtari/PSIS. We then compute the MSE of
the estimators on the log scale, e.g. E[(log(µ̂

(post)
i )− log(µi))

2] for the classical estimator.
For each (n, p) pair we report the average MSE, averaging both over datasets and over
i = 1, . . . , n. The large number of repeated datasets for each (n, p) pair was needed to
ensure stable MSE estimates.

The results are reported in Figure 2. In these simulations, the PSIS estimators mildly
improve over the classical ones for small-to-moderate ratios p/n but overall the two perform
similarly. For example, the MSE of PSIS is never smaller than the one of posterior by
more than a factor of 2, with largest reduction in MSE being roughly of 40% for values
of p/n ≈ 0.35. The mixture estimator outperforms the posterior and PSIS ones in all
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Figure 2: Mean squared error (MSE) for the posterior, PSIS and mixture estimators of
{log p(yi|y−i)}ni=1 for the high-dimensional linear regression experiments of Section 4.1.1.
Left: prior variance σ2

p = 10. Right: prior variance σ2
p = 100/p.

settings, with improvements that become larger as the ratio p/n increases, reaching up to
one-to-two orders of magnitude reduction in MSE. In these high-dimensional regimes the
classical and PSIS estimators break down (note the log-scale) while the mixture estimator
remains reliable with a moderate MSE. This is in agreement with the theory in Section 3,
which implies that AV (post)

i becomes infinite for p sufficiently large, while AV (mix)
i is always

finite and also is uniformly bounded with respect to p when Σ = c/pIp for some finite c.
All methods perform better when the prior is more informative, i.e. when Σ = 100/pIp
compared to Σ = 10Ip, which is again in accordance with the theoretical results of Section
3.

4.1.2 Infinite asymptotic variance and failure of standard rate of convergence

Next we explore more directly the impact of having a finite versus infinite asymptotic
variance. This is better understood in terms of dependence of the MSE on the number
of samples S, rather than fixing S and varying, e.g., n or p. In fact, when AV (post)

i = ∞
the MSE of the estimator log(µ̂

(post)
i ) will decay at a rate slower than the classical O(S−1)

Monte Carlo rate as S →∞. Figure 3 illustrate such phenomenon. The model setting and
MSE computation is analogous to Figure 2, but now we vary S while fixing p = n = 100

and Σ = 10Ip. In this setting the results of Section 3 suggest that AV (post)
i = ∞ while

AV
(mix)
i <∞. In Figure 3 we see the MSE of the classical and PSIS estimators decaying

approximately at a rate O(S−0.1) while the MSE of the mixture estimators follows the
theoretical O(S−1) rate. In practice, this means that in such scenarios, despite being
consistent as S → ∞, the classical and PSIS estimators will require an extremely large
number of samples to make the MSE small.

4.1.3 Real data, misspecification and non-conjugate priors

We now move to study how our estimator performs in a regression setting on a real dataset.
We consider the Bladder cancer data available in the Gene Expression Omnibus (GEO)
repository at https://www.ncbi.nlm.nih.gov/gds, with accession number GSE31684. The
full dataset has 93 observations, and for every observation, we have 54680 covariates,
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Figure 3: MSE (solid lines) as a function of the number of samples S for the different
estimators, see Section 4.1.2 for details. The dashed lines have slopes of -0.984 for mixture,
-0.086 for posterior, -0.091 for PSIS. Slopes far from −1 are indicative of infinite asymptotic
variance and of a MSE decaying at a rate slower than the standard O(S−1) Monte Carlo
one.

most of which are gene expressions of the patients. We derive different sub-datasets
with varying p/n ratios by taking the first p covariates of the original dataset for p ∈
{n2 , n, 2n, 3n, 4n, 5n}. For each of the resulting six datasets, we standardize covariates and
response variable to have zero mean and unit variance before fitting the model. First, we
employ the usual Bayesian linear regression model with conjugate prior

y|X,σ2 ∼ N(Xθ, σ2In) and θ|σ2 ∼ N(θ0, σ
2Σ),

with θ0 = 0 and Σ = 100/pIp, and set σ2 = argmaxσ p(y|σ2) in an empirical Bayes fashion.
The latter operation was not needed for synthetic data since there we could simply set σ
to the true data-generating value. Note that the value of σ2 will also influence the prior
variance for θ as indicated in the above model specification.

We compute estimators based on S = 2 × 104 i.i.d. samples from either the poste-
rior and the mixture. Figure 4 shows the resulting MSE, averaged over 100 independent
repetitions. We can see that, in this real data example, the MSE values are significantly
larger than the ones for simulated data with similar dimensionality and data size (see e.g.
Figure 2), suggesting that real data and potential model misspecification make LOO-CV
computations harder. Table 1 provides more detailed information, including averages and
maximum MSE with respect to data points indices i = 1, . . . , n, as well as percentages
of data points with large Pareto shape parameter k computed with the loo R package
[Vehtari et al., 2020] which are commonly used to diagnose instability of the classical esti-
mators. We did not calculate such shape parameters for the mixture estimators since, by
construction, their weights are upper bounded by 1 and hence the tail shape parameter is
not well defined.

Finally, we consider non-conjugate priors, namely independent Laplace, or double-
Exponential, priors for θ1, . . . , θp with mean parameter equal to 0 and scale parameter
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num. of
covariates

Estimator MSE (average
over i = 1, . . . , n)

MSE (max over
i = 1, . . . , n)

% of k-
shape> .7

p=n/2
Mixture 1.1e-03 7.0e-03 -
Posterior 1.5e-01 5.4e-01 24%
PSIS 1.7e-01 2.4e-01 -

p=n
Mixture 2.9e-01 1.5e+00 -
Posterior 2.8e+00 6.1e+00 86%
PSIS 3.1e+00 4.1e+00

p=2n
Mixture 7.9e-02 4.0e-01 -
Posterior 2.6e+00 5.9e+01 99%
PSIS 2.9e+00 3.7e+00 -

p=5n
Mixture 2.9e-02 1.2e-01 -
Posterior 2.1e+00 4.9e+00 99%
PSIS 2.4e+00 3.0e+00 -

Table 1: Mean squared error (MSE) of the different estimators for sub-datasets of increasing
dimensionality extracted from the Bladder dataset. The % of k-shape> .7 refers to the
diagnostic produced by the loo R package [Vehtari et al., 2020] to indicate unreliable
estimates provided by the posterior estimators.

Figure 4: Average MSE on different sub-datasets of the Bladder Cancer data.

equal to b =
√

50/p, so to have prior variance for each coefficient equal to 100/p. We keep
a Gaussian likelihood, y|X,σ2 ∼ N(Xθ, σ2In), treating the noise parameter σ as unknown
and assigning a InvGamma(4, 6) prior to it. We consider the subset of the Bladder data
with p = 2n. Non-conjugate high-dimensional problems are challenging for Bayesian LOO-
CV computations based on importance sampling and indeed most examples considered in
the literature are of low or moderate dimensionality, with exceptions including [Lamnisos
et al., 2012, Paananen et al., 2021]. Since the model is not conjugate the true values are
not available and thus we computed an accurate approximation to those that we use as
benchmark, using leave-one-out estimators based on long MCMC runs (namely using 10
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num. of
covariates

Estimator MSE (average
over i = 1, . . . , n)

MSE (max over
i = 1, . . . , n)

% of k-
shape> .7

p=n/2
(Laplace
prior)

Mixture 3.0e-0.2 2.7e-0.1 -
Posterior 5.6e-01 3.6e+00 86%
PSIS 6.1e-01 2.9e+00 -

Table 2: Mean squared error (MSE) of the different estimators for a sub-dataset of the
Bladder dataset with non-conjugate Laplace prior and unknown noise level.

chains with 8×103 samples each, resulting in 4×104 total samples after discarding the first
half as burn-in). To ensure high quality of the samples both from the posterior and the
mixture we set the stan control values to adapt_delta = 0.99 and max_treedepth = 15
respectively. We then compute 25 independent replications of the posterior and mixture
estimators based on the default stan value of S = 4 × 103 and report the resulting MSE
in Table 2. In this example the mixture estimators provide roughly a 20 times reduction
in MSE compared to the posterior ones.

4.2 Examples from the Bayesian LOO-CV literature

4.2.1 Leukaemia survival dataset

We now consider the leukaemia dataset, which is a standard example in the literature
on Bayesian LOO-CV computation [Epifani et al., 2008, Vehtari et al., 2017, Rischard
et al., 2018]. The dataset is used to estimate the survival distribution for leukaemia pa-
tients. The response variable is survival time (from diagnosis), and the two explana-
tory variables are white blood cell count at diagnosis (WBC) and the outcome of a
test related to white blood cell characteristics Cook and Weisberg [1982]. Following
previous analysis in the literature, we dichotomize survival times to indicate survival
past 50 weeks, and we discard three repeated observation. The resulting dataset has
n = 30 binary responses, p = 3 regressors including the intercept and is available at
https://github.com/luchinoprince/MixtureIS/. We fit a Bayesian logistic regression
model, meaning that each response yi ∈ {0, 1} is modelled as a Bernoulli random variables
taking value 1 with success probability (1 + exp(xTi θ))

−1 exp(xTi θ), where xi is a vector of
covariates. We assume independent Laplace, or double-Exponential, priors for θ1, . . . , θp
with mean parameter equal to 0 and scale parameter equal to b =

√
50/p, so to have prior

variance for each coefficient equal to 100/p.
This dataset is challenging for LOO-CV calculations due to the presence of a highly-

influential observation, a patient with a high WBC and a survival time of more than 50
weeks, here corresponding to i = 15. In particular, [Epifani et al., 2008] show that for this
dataset AV (post)

15 =∞, while we know by Theorem 3.1.1 that AV (mix)
15 <∞.

The values of {p(yi|y−i)}ni=1 are not available analytically, and we compute an accurate
approximations of {p(yi|y−i)}ni=1 running a separate long MCMC chain to sample from
p(θ|y−i), for each i = 1, . . . , n, with 106 iterations and first half discarded as burn in. We
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treat such estimates as ground truth values, since their Monte Carlo error is negligible
compared to the ones of the other estimators involved in this analysis. We then run 100
independent MCMC chains sampling from p(θ|y) and from qmix(θ), of length 2 × 104

iterations each with the first half discarded as burn-in, and use the resulting samples to
compute 100 i.i.d. replicates of the classical, mixture and PSIS estimators. All MCMC runs
were obtain with the stan interface in python, see e.g. https://pystan.readthedocs.
io/, using default settings, see Appendix A for detail on how to sample from qmix with
stan. No convergence or mixing issues were found using standard diagnostics.

Figure 5 reports the results displaying, for each i = 1, . . . , n, a box-plot of the differences
between the log probability log(p(yi|y−i)) and its 100 estimates. As we can see, the classical
and PSIS estimators struggle to recover the true value of log(p(yi|y−i)) for i = 15 providing
highly biased estimates, which is in line with the results of Epifani et al. [2008], Vehtari
et al. [2017]. On the contrary, the mixture estimator has a drastically smaller error and is
centred around the correct value. All methods are able to accurately recover the ground
truth values for the other values of i.

1 4 6 9 11 14 16 19 22 25 27

1.0

0.5

0.0

0.5

Mixture

1 4 6 9 11 14 16 19 22 25 27

Posterior

1 4 6 9 11 14 16 19 22 25 27

PSIS

Figure 5: Errors in estimating {log p(yi|y−i)}ni=1 for the Leukaemia dataset.

4.2.2 Stack Loss dataset

We now consider a second dataset previously analysed in the Bayesian LOO-CV literature,
namely the Stack Loss dataset. We follow Peruggia [1997] and Vehtari et al. [2017, Section
4.3], obtaining a linear regression model with n = 21 observations and p = 3 regressors.
For this example Peruggia [1997] shows AV (post)

i =∞ for i = 21. Figure 6 displays the root
mean squared error (RMSE) in estimating log(p(yi|y−i)) for the problematic observation,
i = 21, as well as a more ordinary observation, i = 1. We fit the model with different values
of σ2, varying them over a grid centred on the maximum marginal likelihood estimator,
in order to explore sensitivity to the likelihood strength. In this example PSIS improves
over the posterior estimator for both i = 1 and i = 21. For both posterior and PSIS,
the RMSE for i = 21 is an order of magnitude larger than the one for i = 1, while for
the mixture they are of comparable order. As a result, the mixture estimator provides a
major improvement for i = 21, while it performs comparably for i = 1 (slightly better or
worse than posterior and PSIS depending on the value of σ2). This relates to the fact that
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mixture estimators implicitly focus more computational effort on smaller and harder to
estimate values of p(yi|y−i) (see e.g. Remark 2), and thus they are particularly useful for
those.

Figure 6: Root mean squared error (RMSE) in estimating log(p(yi|y−i)) for the Stack Loss
data for i = 1 (left) and i = 21 (right). The x-axis reports the value of σ2.

4.3 High-dimensional binary regression

We now consider three high-dimensional binary regression examples. We consider three
real datasets from the UCI machine learning repository at https://archive.ics.uci.
edu/, namely the Arrhythmia, Voice and Parkinson ones, which cover different n/p ratios.
Preprocessing of the data included removal of covariates that were almost equal for all
individuals, which created stability problems to the HMC algorithm implemented in stan
especially for the Arrhythmia dataset, and normalisation of all remaining covariates to
have zero mean and unit variance. The values of (n, p) for the three datasets in their
final format, which can be found at https://github.com/luchinoprince/MixtureIS, are
(452, 208) for Arrythmia, (756, 755) for Parkinson and (126, 312) for Voice.

For each dataset we ran four MCMC chains for 2 × 103 iterations each, removing the
first half as burn-in, leaving us with S = 4 × 103 samples from both the posterior and
the mixture distributions, which were used to compute the classical, mixture, and PSIS
estimators. stan with defaults setting was used and no convergence or mixing issues
were detected with standard diagnostics. Table 3 summarizes the resulting MSE of the
estimators relative to the ground truth values, averaging over 10 independent repetitions
for each combination of dataset and method.

For the Arrythmia and Voice datasets we obtained accurate estimates (which we treat as
ground truth values) for {log(p(yi|y−i))}ni=1 by drawing 5×104 samples from each of the n
LOO posteriors separately as done in Section 4.2.1. For the Parkinson dataset, the above
procedure would have been computationally unfeasible and we instead obtained ground
truth values for {log(p(yi|y−i))}ni=1 running a long chain sampling from qmix and then
computing the mixture estimators based on 106 samples. Standard diagnostics suggested
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Dataset Estimator MSE (mean over
i = 1, . . . , n)

MSE (max over
i = 1, . . . , n)

% of k-
shape> .7

Arrythmia
n=452
p=208

Mixture 4.4e-03 3.9e-01 -
Bronze 8.0e-03 1.2e+00 23%
Posterior 9.3e-03 1.1e+00 25%
PSIS 6.4e-03 8.7e-01 -

Parkinson
n=756
p=755

Mixture 3.6e-03 3.3e-01 -
Bronze 8.7e-03 1.2e+00 49%
Posterior 1.0e-02 2.0e+00 53%
PSIS 6.0e-03 5.0e-01 -

Voice
n=126
p=312

Mixture 2.3e-03 6.6e-02 -
Bronze 2.4e-02 1.1e+00 54%
Posterior 1.8e-02 9.7e-01 42%
PSIS 2.0e-02 1.0e+00 -

Table 3: Mean squared errors in estimating {log(p(yi|y−i))}ni=1 for three high-dimensional
binary regression datasets. Mean and quantiles are intended over i ∈ {1, . . . , n} for a single
run of each method. See Section 4.3.1 for definition of the bronze estimator.

that the Monte Carlo error for these estimates was at least one order of magnitude smaller
than the one of the other estimates under consideration.

In Table 3, the mixture estimator always performs significantly better than both the
classical and PSIS estimators, see below for discussion on the bronze estimator also reported
in Table 3. Figure 7 displays the evolution of the classical and mixture estimators for the
20 data points with largest absolute value of log(p(yi|y−i)). Some classical estimators
exhibit very large jumps even at high number of iterations, which is a typical pathological
behaviour of estimators with infinite or excessively large variance. The mixture estimators,
despite having some jumps in a few cases, display a much more stable evolution and
convergence.

4.3.1 Comparison to additional alternative computational methodologies

In this section we provide a brief comparison with other alternative methodologies from
the Bayesian LOO-CV computation literature, using the three datasets of Table 3. We
consider the gold, silver and bronze estimators proposed in [Alqallaf and Gustafson, 2001]
and the Sequential Monte Carlo (SMC) approach of [Bornn et al., 2010].

The bronze estimator of [Alqallaf and Gustafson, 2001] is the easiest to compare with.
In our framework, such methodology estimates {p(yi|y−i)}ni=1 performing self-normalized
importance sampling with importance distribution given by the following tempered poste-
rior

qB(θ) ∝

(
n∏
i=1

p(yi|θ)

)n−1
n

p(θ). (17)
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(a) Voice (b) Parkinson (c) Arrhythmia

Figure 7: Evolution of the mixture (first row) and classical (second row) estimators, with
number of samples on the x-axis, for three datasets (one per column). The traceplots of the
estimators corresponding to the 20 data points with largest absolute value of log(p(yi|y−i))
are displayed.

This procedure has a computational cost comparable to the posterior, mixture and PSIS
ones for the same number of samples. We thus test it on the examples in Table 3 using the
same number of samples as well as stan settings. The resulting MSE, which are reported
in Table 3, are closer to the ones of the posterior and PSIS estimators rather than the
mixture ones.

The SMC methodology of [Bornn et al., 2010], when applied to our context, coincides
with running n SMC routines, one for each target value p(yi|y−i), initialized from the
same samples drawn from the posterior p(θ|y). When an adaptive SMC approach is em-
ployed, this procedure ends up performing pure importance sampling (with the posterior
as importance distribution) for data points inducing well behaved importance weights (e.g.
ones with ESS above a given threshold) while performing a genuine SMC routine involv-
ing resampling and MCMC moves for the other values. While the resulting estimators
are often guaranteed to have finite variance (see Bornn et al., 2010), the total compu-
tational cost can be quadratic in n if a considerable proportion of data points requires
non-trivial SMC routines. We thus test how many data points require non-trivial SMC
routines for the high-dimensional binary regression examples above. The results suggest
that approximately 40% for the Voice Dataset, 22% for the Parkinson dataset and 64%
for the Arrhythmia dataset. Such percentages where calculated by looking at the effective
sample size (ESS) of the weights of the posterior, and assessing how many where under
the threshold of 1/2, which is a default value commonly used in the literature [Chopin and
Papaspiliopoulos, 2020]. Such high percentages suggest that SMC, at least in the above
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version, is not particularly suited to such a cross-sectional estimation procedure, since run-
ning Θ(n) separate SMC routines makes it computationally too demanding, while it can
be very appealing in longitudinal scenarios, such as hyper-parameter tuning, see e.g. Bornn
et al. [2010].

Finally, we consider the gold and silver of [Alqallaf and Gustafson, 2001]. These allow
to obtain only an estimation of the whole LOO-CV sum ψ =

∑n
i=1 log(p(yi|y−i)) in (3), as

opposed to the n terms {p(yi|y−i)}ni=1. In particular, the gold estimator of ψ is defined as

ψ̂gold =
n

K

∑
i∈I

log(p(yi|y−i)), (18)

where K is a fixed integer in {1, . . . , n} and I is a collection of K indices uniformly sampled
without replacement from {1, 2, ....n}. The gold estimator is not computable in practice
since we do not know the exact values of p(yi|y−i). A practical approach is given by the
so-called silver estimator, which is defined as

ψ̂silv =
n

K

∑
i∈I

log(µ̂
(loo)
i ), (19)

with K and I defined as for the gold estimator and µ̂
(loo)
i as in (4). We compare the

silver estimator with the estimator of ψ obtained from the mixture estimators by plug-in,
i.e. ψ̂mix =

∑n
i=1 log(µ̂

(mix)
i ). To ensure comparability, we we fix the total computational

resources to 2 × 104 samples (including burn-in ones) both for the silver and mixture
estimators. Thus, for a given value of K, each chain used to compute a single µ̂(loo)

i has
a total of 2 × 104/K samples. Figures 8 shows the errors in estimating ψ obtained with
ψ̂silv for different values of K and with ψ̂mix. We can see that, for small values of K,
ψ̂silv has a large variance due to the variability in the choice of the subset I. On the
contrary, as K increases the bias of each estimator µ̂(loo)

i increases, since these are self-
normalized importance sampling estimators based on 2 × 104/K samples, which became
too few samples as K increases (in the extreme case of K = 721 for the Parkinson data
one has 2× 104/K ≈ 28 samples for every estimator). As a result, regardless of the value
of K, ψ̂silv has a much larger estimation error (note the log-scale on the y axis) than ψ̂mix
with the same number of total samples. Note that for the Voice dataset, given the small
values of n and the large number of total samples, the performances of the silver estimator
are monotonically increasing with K and the optimal value is K = n, which makes the
silver estimator coincide with the brute force approach discussed in Section 2.

5 Extensions

The proposed mixture estimator can be extended in various directions.
First, one could extend the mixture estimators to compute LOO-CV criteria for general

scoring rules beyond the logarithmic one, see e.g. [Bernardo, 1979, Vehtari and Ojanen,
2012]. In such case one would be interested in LOO-CV estimators of quantities such as
Eynew∼p∗ [S(ynew, p(·|y))] where S is a scoring rule and p(·|y) is the predictive distribution
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Figure 8: Errors in estimating ψ for ψ̂silv, with different values of K on the x-axis and
ψ̂mix. Boxplots are based on 25 independent repetitions for each estimator.

of ynew given the observed data y. The main difference in terms of computational method-
ology that may arise is the need for another layer of integration if the scoring rule is not
local [Bernardo, 1979], but instead defined itself as an integral.

Another important extension is to models with non conditionally independent obser-
vations, i.e. where the equality in (1) is not satisfied. There, the mixture distribution can
be written as

qmix(θ) = Z−1
n∑
i=1

p(θ)p(y−i|θ) ∝ p(θ|y)

(
n∑
i=1

p(yi|θ, y−i)−1

)
,

but p(yi|θ, y−i) 6= p(yi|θ) in general and thus the last equality in (8) does not hold. One
should then replace p(yi|θ)−1 with p(yi|θ, y−i)−1 throughout for both the posterior and
mixture estimators, e.g. in (5), (8) and (9). In such contexts, the mixture estimators remain
appealing provided one can compute the n predictive likelihood terms {p(yi|θ, y−i)}ni=1 for a
given θ at Θ(n) total computational cost. This will be the case when, after the computation
of p(y|θ), one can compute p(y−i|θ) for a given i at Θ(1) additional cost, e.g. using rank-one
updates in regression-type models. If instead computing each p(yi|θ, y−i) term can only
be done at Θ(n) cost separately for each i, then computing {p(yi|θ, y−i)}ni=1 has Θ(n2)
total cost and both the mixture and posterior estimators are likely to be impractical and
no better than the brute force approach discussed at the beginning of Section 2.

Finally, another interesting direction to explore in future work is the extension of the
proposed mixture estimator to leave-p-out contexts for p > 1. A naive application of the
mixture methodology, however, where the mixture is defined as qmix(θ) ∝

∑
A p(θ)p(y−A|θ)

where A runs over subsets of {1, . . . , n} of size p, would incur a p-choose-n cost per iteration,
thus being impractical. Nonetheless, we expect such cost to be avoidable using, for example,
appropriate unbiased likelihood estimators in conjunction with pseudo-marginal MCMC
algorithms. We leave such extensions to future work.

5.1 Algorithmic variations

As mentioned in Section 3.1, the mixture distribution qmix could be replaced by a more
general, weighted version q

(α)
mix(θ) = Z−1

α

∑n
i=1 αip(y−i|θ)p(θ) with α = (α1, . . . , αn) ∈
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(0,∞)n being arbitrary weights. In such case Theorem 3.1.1 would still hold, as shown
in its proof. In practice, such weighted version directly affects the value of the mixture
weight components (π1, . . . , πn) that in general satisfy πi ∝ αip(yi|y−i)−1 for i = . . . , n,
see also Remark 1. Since larger values of πi tend to lead to estimators of p(yi|y−i) with
smaller variance, it follows that increasing πi corresponds to putting more computational
effort in estimating p(yi|y−i) relative to other p(yj |y−j) for j 6= i. Thus, having direct
control on πi might be useful to, e.g., design adaptive versions of the algorithm that adapt
the weights α on the fly to put more effort on more important or harder to estimate
values of p(yi|y−i). In the default version, αi = 1 and πi ∝ p(yi|y−i)−1 for i = 1, . . . , n
. As discussed in Remark 2, this is a reasonable default choice that gives more weight
to data points yi with larger values of |log p(yi|y−i)|, which are typically more important
(e.g. contribute more to LOO-CV) and harder to estimate. However, πi ∝ p(yi|y−i)−1 may
not be the optimal choice in general, and thus weighted versions q(α)

mix might be useful to
increase robustness of the proposed estimating procedure to, e.g. overly large values of πi.
In our preliminary exploration, different values of α did not lead to major improvements
compared to the default version, which is why we only presented results for that version
in this paper. However, we do not exclude that more complex or extreme examples may
benefit from tuning of α.

As discussed in Remark 1, the estimators {µ̂(mix)
i }ni=1 effectively estimate the mixture

weights {πi}ni=1 and the normalizing constant Z̃ and then compute p(yi|y−i) = Z̃−1π−1
i .

One might consider more advanced methodologies, e.g. Bridge Sampling [Bennett, 1976,
Meng and Wong, 1996], to estimate the normalizing constant Z̃ between qmix(θ) and p(θ|y),
but we expect this to lead to minimal improvements. In fact, the largest relative variance
in all our experiments was given by the estimators of πi, i.e. the numerators in (9), and
thus employing a better estimator of Z̃ would only provide minimal improvements. In
this sense, we found that the key and main task required to estimate {p(yi|y−i)}ni=1 is
estimating the mixture weights {πi}ni=1, while estimating Z̃ was significantly easier in all
examples we considered.

6 Discussion

We proposed a novel estimator for Bayesian LOO-CV estimator that retains appealing
features of classical estimators, such as simplicity of implementation and Θ(Sn) total cost,
while significantly improving robustness to high-dimensionality. We expect our proposed
computational methodology to be most useful when the number of parameters is of com-
parable order, or even larger, than the number of data points. Interestingly, these are
regimes where LOO-CV exhibits considerably smaller bias in estimating the ELPD com-
pared to other cross-validation strategies such as k-fold, see e.g. Rad et al. [2020] and
references therein. Our work supports the idea that Bayesian LOO-CV computations can
be efficiently accomplished with Monte Carlo methods, requiring a computational effort
comparable to fitting the model once. This seems to be a computational advantages com-
pared to, e.g., marginal likelihood or Bayes Factors approximation, which is typically a
much harder task.
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Directions for future research include characterizing how easy or hard it is to sample
from the mixture qmix compared to p(θ|y), which would provide a more complete theoretical
picture on the comparison between the efficiency of classical and mixture estimators; and
extending the asymptotic analysis of Section 3.2 to cases where both n and p diverge
simultaneously.
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A Implementation details

A.1 Sampling from the proposed mixture with MCMC

For models with conditionally independent data as in (1) the log posterior is typically
computed as the sum of log prior and log likelihood contributions as follows

log p(θ|y) = log p(θ) +

n∑
i=1

log p(yi|θ) + const , (20)

where const denotes terms that do not depend on θ. For qmix(θ) defined in (8) we have the
same expression plus an additional term that can be written as follows to ensure numerical
stability

log qmix(θ) = log p(θ) +

n∑
i=1

log p(yi|θ) + LSE({− log p(yi|θ)}ni=1) + const , (21)

where LSE denotes the usual LogSumExp function defined as LSE(x) = log(
∑n

i=1 exp(xi))
for x = {xi}ni=1 ∈ Rn. The expression in (21) is trivial to compute whenever the log-prior
and log-likelihoods are computable and requires Θ(n) operations per evaluation, exactly as
log p(θ|y). In other words, qmix(θ) can be computed up to normalizing constant whenever
the original posterior p(θ|y) can. We further note that, while computing log qmix(θ) in
(21) may appear to require roughly twice as many computations as log p(θ|y) in (20), as
one needs to compute both the sum and the LSE quantities, for most models the cost of
computing the n likelihood terms {log p(yi|θ)}ni=1 dominates the cost of computing their
sum or the LSE function, e.g. a Θ(np) cost for the former versus a Θ(n) cost for the latter
for a regression model with n data points and p covariates. Thus in such cases computing
log qmix(θ) and log p(θ|y) have roughly the same cost.

The expression in (21) is also trivial to differentiate, allowing to compute the gradi-
ent ∇ log qmix(θ), and is amenable to standard probabilistic programming software based
automatic differentiation. For example, for the logistic regression model used in Sections
4.2.1 and 4.3 the stan code to define the posterior p(θ|y) is given by

data {
int <lower=0> n;
int <lower=0> k;
int <lower=0, upper=1> y[n];
matrix [n,p] X;
real <lower=0.0> prior_scale;

}
parameters {

vector[p] beta;
}
model{

vector[n] means=X*beta;
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target += double_exponential_lpdf(beta | 0, prior_scale);
target += bernoulli_logit_lpmf(y | means);

}

while to define the mixture distribution qmix(θ) one should replace the model section with

model{
vector[n] means=X*beta;
vector[n] log_lik;
for (index in 1:n){

log_lik[index]= bernoulli_logit_lpmf(y[index] | means[index]);
}
target += double_exponential_lpdf(beta | 0, prior_scale);
target += sum(log_lik);
target += log_sum_exp(-log_lik);

}

See also the github repository accompanying the paper, https://github.com/luchinoprince/
MixtureIS, for more details and examples of software implementations.

A.2 Efficient computation of the mixture estimators

Given S samples {θs}Ss=1 from qmix(θ), the n estimators {µ̂(mix)
i }ni=1 defined in (9) can be

computed at Θ(nS) total cost in a numerically stable way as follows:
(i) compute the n × S matrix of log-likelihood terms {`is}i,s, where `is = log p(yi|θs)

for i = 1, . . . , n and s = 1, . . . , S;
(ii) compute the n× S matrix of log-weights {w̃is}i,s defined as w̃is = log(w

(mix)
i (θs)),

using the equality w̃is = −`is − z̃s for i = 1, . . . , n and s = 1, . . . , S, where z̃s =
LSE({−`is}ni=1) for s = 1, . . . , S;

(iii) compute the log-estimators exploiting the equality log µ̂
(mix)
i = z̃−LSE({w̃is}Ss=1)

for i = 1, . . . , n where z̃ = LSE({−zs}Ss=1).
The above operations (i)-(iii) require Θ(nS) computational cost. In terms of memory

requirements, the simplest implementation of the above operations, which creates the n×S
matrices {`is}i,s and {w̃is}i,s, require Θ(nS) storage, but this can be easily reduced to Θ(n)
storage, if required, by storing only one column at a time.

B Proofs

Proof of Theorem 3.1.1. A standard application of the delta method for the derivation of
the relative asymptotic variance of self-normalized importance sampling estimators, see
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e.g. Liu [2001, eq.(2.7)] or Owen [2013, eq.(9.8)], applied to µ̂(mix)
i leads to

AV
(mix)
i = lim

S→∞
S var

(
µ̂

(mix)
i

µi

)
=

∫ (
p(θ|y−i)
q

(α)
mix(θ)

)2(
p(yi|θ)
µi

− 1

)2

q
(α)
mix(θ)dθ

=

∫
p(θ|y)2

q
(α)
mix(θ)

dθ − 2

∫
p(θ|y)p(θ|y−i)

q
(α)
mix(θ)

dθ +

∫
p(θ|y−i)2

q
(α)
mix(θ)

dθ , (22)

where in the last equality we re-arranged terms and used µ−1
i p(θ|y−i)p(yi|θ) = p(θ|y).

Writing q(α)
mix(θ) =

∑n
j=1 πjp(θ|y−j) with πj = Z−1

α αjp(y−j) and upper bounding the neg-
ative terms in (22) by 0, we have

AV
(mix)
i ≤

∫
p(θ|y)2∑n

j=1 πjp(θ|y−j)
dθ +

∫
p(θ|y−i)2∑n

j=1 πjp(θ|y−j)
dθ. (23)

From
∑n

j=1 πjp(θ|y−j) ≥ πip(θ|y−i) it follows∫
p(θ|y−i)2∑n

j=1 πjp(θ|y−j)
dθ ≤

∫
p(θ|y−i)2

πip(θ|y−i)
dθ = π−1

i

and ∫
p(θ|y)2∑n

j=1 πjp(θ|y−j)
dθ ≤ π−1

i

∫
p(θ|y)2

p(θ|y−i)
dθ = π−1

i p(yi|y−i)−1

∫
p(yi|θ)p(θ|y)dθ ,

where in the last equality we also used p(θ|y−i)−1p(θ|y) = p(yi|y−i)−1p(yi|θ). Combining
the above with (23) we obtain

AV
(mix)
i ≤ π−1

i

(
1 + p(yi|y−i)−1

∫
p(yi|θ)p(θ|y)dθ

)
. (24)

The latter upper bound is finite by (A1) and the fact that αi > 0 implies πi > 0.

B.1 Proof of Theorem 3.2.1

Lemma B.1.1. For any h ∈ (0, 1), the matrix [XTX + σ2 ·Σ−1 − h−1xix
T
i ] is singular if

and only if Hii = h, with H as in (12). If Hii 6= h then

[XTX + σ2 · Σ−1 − h−1xix
T
i ]−1 =

(XTX)−1 +
h−1

1− h−1Hii
· (XTX + σ2Σ−1)−1xix

T
i (XTX + σ2Σ−1)−1 . (25)

Proof. Assume first that Hii = h, then xi 6= 0 (the zero vector has leverage zero). Mul-
tiplying [XTX + σ2 · Σ−1 − h−1xix

T
i ] by the non-zero vector (XTX + σ2Σ−1)−1xi yields

[XTX + σ2 · Σ−1 − h−1xix
T
i ](XTX + σ2Σ−1)−1xi = xi + h−1Hiixi = 0. Hence we have

proved that in this case [XTX + σ2 ·Σ−1 − h−1xix
T
i ] is singular. We now verify that (25)
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is the inverse of [XTX + σ2 ·Σ−1− h−1xix
T
i ] when Hii 6= h. Multiplying the two matrices

we get:

I +
h−1

1− h−1Hii
xix

T
i (XTX + σ2 · Σ−1)−1 − h−1xix

T
i (XTX + σ2 · Σ−1)−1

+
h−2Hii

1− h−1Hii
xix

T
i (XTX + σ2 · Σ−1)−1

= I + xix
T
i (XTX + σ2 · Σ−1)−1

( h−1

1− h−1Hii
+ h−1 − h−2Hii

1− h−1Hii

)
= I .

Lemma B.1.2. Let Σ be a positive definite p × p matrix, X a n × p matrix, σ > 0 and
M = XTX − h−1xix

T
i + σ2Σ−1 with i ∈ {1, . . . , n} and h ∈ (0, 1). Then M is positive

definite if and only if Hii < h, with H as in (12).

Proof. Assume that [XTX + σ2 · Σ−1 − h−1xix
T
i ] is positive definite. If xi = 0, then

Hii = 0 < h. If xi 6= 0, then (XTX + σ2Σ−1)−1xi is a non-zero vector and we must have,
by positive definiteness, 0 < xTi (XTX + σ2Σ−1)−1[XTX + σ2 · Σ−1 − h−1xix

T
i ](XTX +

σ2Σ−1)−1xi = Hii(1− h−1Hii). This implies that Hii < h.
Conversely, suppose that Hii < h. Then h−1/(1 − h−1Hii) > 0, and (25) shows that

[XTX+σ2 ·Σ−1−h−1xix
T
i ]−1 can be written as the sum of a positive definite matrix and a

positive semi-definite one. As such, it is positive definite, and [XTX+σ2 ·Σ−1−h−1xix
T
i ]

must be positive definite as well.

Proof of Theorem 3.2.1. The relative asymptotic variance of the classical estimator µ̂(post)
i

can be derived in analogous way to the derivation in (22), with the importance distribution
q

(α)
mix(θ) replaced by the posterior p(θ|y). After simplifications, this leads to

AV
(post)
i =

∫ (
p(θ|y−i)
p(θ|y)

)2

p(θ|y)dθ − 1. (26)

By (26) and (11) we have

AV
(post)
i + 1 = c1

∫
exp
{2(yi − xTi θ)2

2σ2
− (y −Xθ)T (y −Xθ)

2σ2
− (θ − θ0)TΣ−1(θ − θ0)

2

}
dθ,

(27)

where c1 is a constant independent of θ. Grouping together quadratic and linear terms in
θ we obtain

AV
(post)
i = c2

∫
exp
{
− θTMθ + θT v

}
dθ , M = (2σ2)−1[XTX − 2xix

T
i + σ2Σ−1] (28)

where v is a p-dimensional vector and c2 is a non-zero scalar, and both are independent of
θ. It follows that AV (post)

i is finite if and only if M is positive definite. The thesis follows
by Lemma B.1.2 with h = 0.5.
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B.2 Proof of Proposition 3.2.2 and Theorems 3.2.3, 3.2.4 and 3.2.5

Proof of Proposition 3.2.2. Denoting λp = ν−2
p σ2 and applying Woodbury matrix identity

we have

H = X(XTX + λpIp)−1XT ,

= X(λ−1
p Ip − λ−1

p XT (In + λ−1
p XXT )−1λ−1

p X)XT

= λ−1
p XXT − λ−1

p XXT (In + λ−1
p XXT )−1λ−1

p XXT .

Since limp→∞ pλ
−1
p = σ−2c, by Kolmogorov’s criterion of SLLN and the random design

assumption (A2) on X, we have p−1XXT → τ2In almost surely element-wise as p → ∞,
see e.g. Fasano et al. [2022, Lemma 1] for a more detailed proof of the latter statement. It
follows that λ−1

p XXT → cτ2

σ2 In almost surely element-wise as p → ∞ and H converges in
the same way to

cτ2

σ2
In −

cτ2

σ2
In(In +

cτ2

σ2
In)−1 cτ

2

σ2
In =

cτ2

σ2 + cτ2
In ,

which implies the desired convergence of Hii. The statement about AV (post)
i follows by

combining the above result with Theorem 3.2.1.

Proof of Theorem 3.2.3. The statement follows from part (a) of Theorem 3.2.4, since (11)
is a special case of (14).

Proof of Theorem 3.2.4. First we prove part (a). Using π−1
i =

(∑n
j=1 p(yj |y−j)−1

)
p(yi|y−i)

we can re-write the upper bound in (24) as

AV
(mix)
i ≤

 n∑
j=1

p(yj |y−j)−1

(p(yi|y−i) +

∫
p(yi|θ)p(θ|y)dθ

)
. (29)

By the subadditivity and submultiplicativity of lim sup, and monotonicity of t 7→ t−1 on
(0,∞), it follows

lim sup
p→∞

AV
(mix)
i ≤

 n∑
j=1

(lim inf
p→∞

p(yj |y−j))−1

(lim sup
p→∞

p(yi|y−i) + lim sup
p→∞

∫
p(yi|θ)p(θ|y)dθ

)
.

(30)
We now prove that all terms on the right-hand side are finite. We have p(yi|y−i) =
p(y)/p(y−i) where, by (14),

p(y) =

∫ n∏
j=1

g(yj |ηj)p(η)dη and p(y−i) =

∫ ∏
j 6=i

g(yj |ηj)p(η)dη

where p(η) = N(η; 0, Ap) with Ap = ν2
pXX

T is the prior distribution on η = (η1, . . . , ηn)
induced by the prior on (θ1, . . . , θp) and the linear transformation η = Xθ. As shown
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in the proof of Proposition 3.2.2, we have p−1XXT → τ2In almost surely element-wise
as p → ∞, and thus also Ap = ν2

pXX
T = pν2

p(p−1XXT ) → cτ2In, which implies that
p(η) → N(η; 0, cτ2In) almost surely as p → ∞, where the convergence is point-wise in
η ∈ Rn. Also, since Ap → cτ2In as p→∞, we have that, almost surely for large enough p,
Ap is invertible, its determinant satisfies |Ap|> (cτ2/2)n and (A−1

p −(2cτ2)−1In) is positive
definite. These observations imply that, almost surely, for large enough p allow we have

p(η) < (πcτ2)−n/2 exp
(
−(4cτ2)−1‖η‖2

)
,

for every η ∈ Rn. Combining the above bound with the boundedness of the likelihood, we
can apply the dominated convergence theorem and deduce that

p(y)→
∫
Rn

n∏
j=1

g(yj |ηj)N(η; 0, cτ2In)dη =

n∏
j=1

∫
R
g(yj |ηj)N(ηj ; 0, cτ2)dηj ∈ (0,∞)

almost surely as p→∞. Applying the same argument to p(y−i) we obtain

p(yi|y−i) =
p(y)

p(y−i)
→
∏n
j=1

∫
R g(yj |ηj)N(ηj ; 0, cτ2)dηj∏

j 6=i
∫
R g(yj |ηj)N(ηj ; 0, cτ2)dηj

=

∫
R
g(yi|ηi)N(ηi; 0, cτ2)dηi ∈ (0,∞) ,

(31)
meaning that lim supp→∞ p(yi|y−i) <∞ and (lim infp→∞ p(yi|y−i))−1 <∞ almost surely.
By the same argument we also have (lim infp→∞ p(yj |y−j))−1 <∞ for j = 1, . . . , n. Finally,
by (14) and Bayes Theorem, we can write∫

p(yi|θ)p(θ|y)dθ =

∫
p(yi|θ)p(y|θ)p(θ)dθ∫

p(y|θ)p(θ)dθ
=

∫
Rn g(yi|ηi)2

∏
j 6=i g(yj |ηj)p(η)dη∫

Rn

∏n
j=1 g(yj |ηj)p(η)dη

and applying dominated convergence arguments analogous to above we obtain∫
p(yi|θ)p(θ|y)dθ →

∫
R g(yi|ηi)2N(ηi; 0, c)dηi∫
R g(yi|ηi)N(ηi; 0, c)dηi

∈ (0,∞) ,

which implies that lim supp→∞
∫
p(yi|θ)p(θ|y)dθ. Combining the above bounds with (30)

we deduce lim supp→∞AV
(mix)
i <∞.

Consider now part (b) and assume
∫
R g(yi|ηi)−1 exp(−δη2

i )dηi < ∞ for some δ <
(2cτ2)−1. By (26)

AV
(post)
i + 1 =

∫ (
p(θ|y−i)
p(θ|y)

)2

p(θ|y)dθ =
p(yi|y−i)
p(y−i)

∫
p(y−i|θ)2

p(y|θ)
p(θ)dθ .

By (31) we have limp→∞
p(yi|y−i)
p(y−i)

= a for some a ∈ (0,∞) . Thus

lim sup
p→∞

AV
(post)
i + 1 = a lim sup

p→∞

∫
p(y−i|θ)2

p(y|θ)
p(θ)dθ .
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By (14)

∫
p(y−i|θ)2

p(y|θ)
p(θ)dθ =

∫
Rn

∏
j 6=i g(yj |ηj)
g(yi|ηi)

p(η)dη ≤

∏
j 6=i

sup
ηj
g(yj |ηj)

∫
R
g(yi|ηi)−1p(ηi)dηi

with p(η) = N(η; 0, Ap) as above and p(ηi) = N(ηi; 0, a
(i)
p ) where a(i)

p is the i-th diagonal
term of Ap. By Ap → cτ2In almost surely, we have a(i)

p → cτ2 and thus (2a
(i)
p )−1 > δ

eventually as p→∞ since δ < (2cτ2)−1. It follows

lim sup
p→∞

∫
R
g(yi|ηi)−1p(ηi)dηi =(2πcτ2)−1/2 lim sup

p→∞

∫
R
g(yi|ηi)−1 exp(−(2a(i)

p )−1η2
i )dηi

≤(2πcτ2)−1/2 lim sup
p→∞

∫
R
g(yi|ηi)−1 exp(−δη2

i )dηi <∞ .

Combining the above inequalities we obtain lim supp→∞AV
(post)
i <∞ as desired.

Finally, consider part (b) and assume
∫
R g(yi|ηi)−1 exp(−δη2

i )dηi = ∞ for some δ >
(2cτ2)−1. In this case, using that Ap → cτ2In as p→∞ we have

lim sup
p→∞

∏
j 6=i g(yj |ηj)
g(yi|ηi)

p(η)dη =(2πcτ2)−n/2 lim sup
p→∞

∫
Rn

∏
j 6=i g(yj |ηj)
g(yi|ηi)

exp(−ηTApη)dη

≥(2πcτ2)−n/2
∫
Rn

∏
j 6=i g(yj |ηj)
g(yi|ηi)

exp(−δ‖η‖2)dη

= (2πcτ2)−n/2

∏
j 6=i

∫
R
g(yj |ηj) exp(−δη2

j )dηj

∫
R
g(yi|ηi)−1 exp(−δη2

i )dηi =∞ ,

where we used the fact that δIn − Ap is eventually positive definite as p → ∞ since
δ > (2cτ2)−1.

Proof of Theorem 3.2.5. Part (a). We first show that AV (loo)
i diverges as p → ∞. A

derivation analogous to (22), with the importance distribution q
(α)
mix(θ) replaced by the

LOO posterior p(θ|y−i) and some simple algebraic simplifications, leads to

AV
(loo)
i =

∫
p(θ|y)2

p(θ|y−i)
dθ − 1 =

p(y−i)

p(y)2

∫
p(yi|θ)p(y|θ)p(θ)dθ − 1 ,

where we also used the conditional independence assumption p(y|θ) =
∏n
i=1 p(yi|θ). Com-

bining the above with (14) we have

AV
(loo)
i + 1 =

(∫ ∏
j 6=i g(yj |ηj)p(η−i)dη−i

) (∫
hi(η)p(η)dη

)
(∫ ∏n

j=1 g(yj |ηj)p(η)dη
)2 , (32)
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where p(η−i) and p(η) denote the prior distributions of η−i and η under (14), and hi(η) =

g(yi|ηi)
∏n
j=1 g(yj |ηj). Since p(η) = N(η; 0, Ap) withAp = ν2

pXX
T and p(η−i) = N(η−i; 0, A

(i)
p )

with A(i)
p = ν2

pX−iX
T
−i, we can rewrite AV (loo)

i + 1 as√√√√2πpν2
p

|1pXXT |
|1pX−iX

T
−i|

(∫ ∏
j 6=i g(yj |ηj)K−i(η−i)dη−i

) (∫
hi(η)K(η)dη

)
(∫ ∏n

j=1 g(yj |ηj)K(η)dη
)2 , (33)

where K(η) = exp
(
−ηT (2ν2

pXX
T )−1η

)
and K−i(η−i) = exp

(
−ηT−i(2ν2

pX−iX
T
−i)
−1η−i

)
.

We now analyze the limiting behaviour of each term in (33). First we have limp→∞
| 1
p
XXT |

| 1
p
X−iXT

−i|
=

τ2 since p−1XXT → τ2In and p−1X−iX
T
−i → τ2In−1 almost surely, as shown in the proof

of Proposition 3.2.2, and the determinant is a continuous function. Note that the latter
convergences also imply that XXT and X−iXT

−i are almost surely eventually invertible as
p→∞ so that K and K−i are well defined. Then K(η) ≤ 1 implies∫ n∏

j=1

g(yj |ηj)K(η)dη ≤ Iy <∞ ,

where Iy =
∫ ∏n

j=1 g(yj |ηj)dη =
∏n
j=1

∫
g(yj |ηj)dηj is a positive and finite constant by

the assumptions in part (a). Also, K(η) = exp
(
− 1

2pν2p
ηT (p−1XXT )−1η

)
combined with

p−1XXT → τ2In and pν2
p →∞ implies that K(η)→ exp(0) = 1 for every η ∈ Rn almost

surely as p → ∞, and similarly also K−i(η−i) → exp(0) = 1 for every η−i ∈ Rn−1. It
follows by Fatou’s lemma that

lim inf
p→∞

∫ ∏
j 6=i

g(yj |ηj)K−i(η−i)dη ≥ Iy−i and lim inf
p→∞

∫
hi(η)K(η)dη−i ≥ Iỹ ,

where Iỹ =
∫
hi(η)dη and Iy−i =

∏
j 6=i
∫
g(yj |ηj)dηj are positive and finite constants by the

assumptions in part (a). Combining the above results with (33), the submultiplicativity of
the lim inf and pν2

p →∞, we get

lim inf
p→∞

AV
(loo)
i + 1 ≥

√
2πτ2

Iy−iIỹ

I2
y

lim inf
p→∞

√
pν2
p =∞ ,

as desired.
We now prove that also AV (mix)

i diverges as p→∞ under the assumptions of part (a).
By (22) and p(θ|y−i)

qmix(θ) ≤ π
−1
i we have

AV
(mix)
i ≥

∫
p(θ|y)2

qmix(θ)
dθ − 2

∫
p(θ|y−i)
qmix(θ)

p(θ|y)dθ ≥
∫

p(θ|y)2

qmix(θ)
dθ − 2π−1

i ,

which implies

lim inf
p→∞

AV
(mix)
i ≥ lim inf

p→∞

∫
p(θ|y)2

qmix(θ)
dθ − 2

lim infp→∞ πi
.
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We now prove that
∫ p(θ|y)2

qmix(θ)dθ diverges with p and that lim infp→∞ πi > 0 for every i, thus

deducing limp→∞AV
(mix)
i =∞ from the inequality above. First, by (14) we have∫

p(θ|y)2

qmix(θ)
dθ =

∑n
j=1 p(y−j)

p(y)2

∫ ∏n
i=1 g(yi|ηi)2∑n

k=1

∏
i 6=k g(yi|ηi)

p(η)dη =

n∑
j=1

p(y−j)
∫
h(η)p(η)dη

p(y)2

with h(η) = (
∑n

k=1 g(yk|ηk)−1)−1
∏n
i=1 g(yi|ηi). Then, using p(y−j) =

∫ ∏
i 6=j g(yi|ηi)p(η−j)dη−j

with p(η−j) = (2πν2
p |X−jXT

−j |)−(n−1)/2K−j(η−j) as defined above, we have

∫
p(θ|y)2

qmix(θ)
dθ =

n∑
j=1

√√√√2πpν2
p

|1pXXT |
|1pX−jX

T
−j |

(∫ ∏
k 6=j g(yk|ηk)K−j(η−j)dη−j

) (∫
h(η)K(η)dη

)
(∫ ∏n

j=1 g(yj |ηj)K(η)dη
)2 .

Proceeding as done above for AV (loo)
i +1, exploiting the almost sure point-wise convergences

K(η)→ 1 and K−j(η−j)→ 1, one can derive

lim inf
p→∞

∫
p(θ|y)2

qmix(θ)
dθ ≥

n∑
j=1

√
2πτ2

Iy−iImix

I2
y

lim inf
p→∞

√
pν2
p =∞ ,

where Imix =
∫
h(η)p(η)dη is a positive constant.

We now prove that lim infp→∞ πi > 0 for every i. From πi = p(y−i)∑n
j=1 p(y−i)

= (1 +∑
j 6=i

p(y−j)
p(y−i)

)−1 it follows that

lim inf
p→∞

πi =

1 + lim sup
p→∞

∑
j 6=i

p(y−j)

p(y−i)

−1

≥

1 +
∑
j 6=i

lim sup
p→∞

p(y−j)

p(y−i)

−1

.

Then we write for every j 6= i

p(y−j)

p(y−i)
=

(
|p−1X−iX

T
−i|

|p−1X−jXT
−j |

)1/2 ∫ ∏
k 6=j g(yk|ηk)K−j(η−j)dη−j∫ ∏
k 6=i g(yk|ηk)K−i(η−i)dη−i

,

which, using p−1X−iX
T
−i → τ2In−1, p−1X−jX

T
−j → τ2In−1,K−j(η−j) ≤ 1 andK−i(η−i)→

1, similarly to before, implies that lim supp→∞
p(y−j)
p(y−i)

≤ Iy−j

Iy−i
<∞.

Part (b). We start by proving lim supp→∞AV
(loo)
i <∞. By (32) we can deduce

lim sup
p→∞

AV
(loo)
i + 1 ≤ B2

lim inf
p→∞

∫ n∏
j=1

g(yj |ηj)p(η)dη

−2

(34)

where B = supη∈Rn

∏n
i=1 p(yi|ηi) is a finite constant by the assumption of upper bounded

likelihood. Since p(η) = N(η; 0, ν2
pXX

T ) → 0 almost surely for every η ∈ Rn as p → ∞,
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it is convenient to define the change of variables γ = (pν2
p)−1/2η and re-write the integral

above as∫
Rn

n∏
j=1

g(yj |ηj)N(η; 0, ν2
pXX

T )dη =

∫
Rn

n∏
j=1

g
(
yj |
√
pν2
pγj

)
N(γ; 0, p−1XXT )dγ. (35)

Defining ai = limηi→−∞ g(yi|ηi) and bi = limηi→∞ g(yi|ηi), we have limp→∞ g
(
yj |
√
pν2
pγj

)
=

(ai(1−sgn(γi))+bi sgn(γi)) for every i and every γi 6= 0 ∈ R and limp→∞N(γ; 0, p−1XXT ) =
N(γ; 0, τ2In) for every γ ∈ Rn almost surely as p→∞. Thus, by Fatou’s lemma we have

lim inf
p→∞

∫
Rn

n∏
j=1

g
(
yj |
√
pν2
pγj

)
N(γ; 0, p−1XXT )dγ ≥

∫
Rn

n∏
j=1

(ai(1− sgn(γi)) + bi sgn(γi))N(γ; 0, τ2In)dγ =

n∏
j=1

(
ai
2

+
bi
2

)
> 0 . (36)

The latter product is a positive constant by the assumption ai+bi > 0 for any i. Combining
(36) and (34) we obtain lim supp→∞AV

(loo)
i <∞ as desired.

We now prove lim supp→∞AV
(mix)
i <∞. Equation (36) states that lim infp→∞ p(y) >

0. An analogous derivation can be used to prove that lim infp→∞ p(y−j) > 0 for ev-
ery j = 1, . . . , n. Combining the latter with lim supp→∞ p(y−j) ≤ B−j < ∞ for every
j = 1, . . . , n, with B−j = supη∈Rn

∏
i 6=j p(yi|ηi) < ∞, we obtain that lim infp→∞ πi ≥

lim infp→∞ p(y−i)∑n
j=1 lim supp→∞ p(y−i)

> 0. One can then deduce

lim sup
p→∞

AV
(mix)
i < (lim sup

p→∞
π−1
i )(lim sup

p→∞
AV

(loo)
i ) <∞

as desired.
To conclude, we prove limp→∞AV

(post)
i =∞. By (14) and (26)

AV
(post)
i + 1 =

p(y)

p(y−i)2

∫
Rn

∏
k 6=i g(yk|ηk)
g(yi|ηi)

p(η)dη.

Thus

lim inf
p→∞

AV
(post)
i + 1 ≥ lim infp→∞ p(y)

B2
−i

lim inf
p→∞

∫
Rn

∏
k 6=i g(yk|ηk)
g(yi|ηi)

p(η)dη,

where B−i < ∞ and lim infp→∞ p(y) > 0 as shown above. Using the same change of
variable of (35) and proceeding as in (36) we obtain

lim inf
p→∞

∫
Rn

∏
k 6=i g(yk|ηk)
g(yi|ηi)

p(η)dη ≥
(

1

2ai
+

1

2bi

)∏
j 6=i

(
aj
2

+
bj
2

)
=∞

where the latter equality follows from the assumptions that aibi = 0 and (ai+bi) ∈ (0,∞).
It follows that lim infp→∞AV

(post)
i =∞ almost surely, and thus also limp→∞AV

(post)
i =∞

almost surely as desired.
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